Model Penilaian Tanah Massal Berbasis Bidang Tanah Menggunakan Algoritma Random Forest di Kota Surakarta
DOI:
https://doi.org/10.53686/jp.v14i1.204Keywords:
model, penilaian tanah, random forest, hyperparameterAbstract
Penilaian tanah massal berbasis bidang tanah dapat dilakukan dengan menggunakan model berdasarkan variabel-variabel bebas pembentuk nilai tanah. Salah satu model yang disarankan untuk model nilai tanah yaitu algoritma random forest. Agar random forest memiliki kemampuan prediksi yang baik maka perlu dilakukan pengaturan hyperparameter antara lain mtry, jumlah pohon yang dibangun (num.trees), dan jumlah minimal node (min.node.size). Penelitian ini bertujuan untuk melihat kinerja model penilaian tanah menggunakan random forest dengan analisis pengaturan hyperparameter agar mendapatkan hasil akurasi terbaik. Hasil penelitian menunjukkan model nilai tanah memiliki nilai R2 sebesar 82,96% dan nilai mean absolute percent error (MAPE) sebesar 26,83 sehingga model memiliki kemampuan prediksi yang layak. Berdasarkan standar rasio yang dikeluarkan oleh IAAO, uji kualitas model penilaian tanah menghasilkan nilai coefficient of variation (COV) sebesar 22,62 dan nilai coefficient of dispersion (COD) sebesar 25,29 serta nilai price related differential (PRD) sebesar 1,12. Nilai COV, COD, dan PRD masih di luar batas toleransi yang ditetapkan.
Parcel-based mass valuation can be carried out using a model based on the land value independent variables. One model that is recommended for modeling land value is the random forest algorithm. In order for random forest to have good predictive capabilities, it is necessary to tune hyperparameters including mtry, number of trees built (num.trees) and minimum number of nodes (min.node.size). This research aims to show the performance of a land valuation model using random forest with hyperparameter tuning analysis to get the best accuracy. The research results show that the land valuation model has an R2 of 82.96% and a mean absolute percent error (MAPE) of 26.83, so the model has reasonable predictive ability. Based on the standard ratio issued by the IAAO, the land valuation model quality test gives a coefficient of variation (COV) value of 22.62, a coefficient of dispersion (COD) value of 25.29, and a price-related differential (PRD) value of 1.12. COV, COD, and PRD are still outside the specified tolerance limits
References
Adetunji, A. B., Akande, O. N., Ajala, F. A., Oyewo, O., Akande, Y. F., & Oluwadara, G. (2022). House Price Prediction using Random Forest Machine Learning Technique. Procedia Computer Science, 199, 806–813. https://doi.org/10.1016/j. procs.2022.01.100
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi. org/10.1023/A:1010933404324
Christy, E., & Suryowati, K. (2021). Analisis Klasifikasi Status Bekerja Penduduk Daerah Istimewa Yogyakarta Menggunakan Metode Random Forest. Jurnal Statistika Industri Dan Komputasi, 6(1), 69–76.
Díaz-Uriarte, R., & Alvarez de Andrés, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 1–13. https://doi. org/10.1186/1471-2105-7-3
Direktorat Penilaian Tanah dan Ekonomi Pertanahan. (2022). Petunjuk Teknis Direktorat Penilaian Tanah dan Ekonomi Pertanahan Tahun 2022. Kementerian Agraria dan Tata Ruang/Badan Pertanahan Nasional.
Genuer Robin, & Poggi Jean-Michel. (2020). Random Forests with R. Springer. http:// www.springer.com/series/6991
Gloudemans, R. . (1982). Simplified salesbased models for condominium/townhouse valuation.
Goldstein, B. A., Polley, E. C., & Briggs, F. B. S. (2011). Random forests for genetic association studies. Statistical Applications in Genetics and Molecular Biology, 10(1), 32. https:// doi.org/10.2202/1544-6115.1691 IAAO. (2013). Standard on Ratio Studies. International Association of Assessing Officers. http:// www.iaao.org
IAAO. (2017). Standard on Mass Appraisal of Real Property. International Association of Assessing Officers. www.iaao.org
IAAO. (2018). Standard on Automated Valuation Models (AVMs). International Association of Assessing Officers. www.iaao.org
Insukindro. (1992). Pembentukan Model Dalam Penelitian Ekonomi. Journal of Indonesian Economy and Business, 7, 18. https:// journal.ugm.ac.id/jieb/article/view/40075
KEPI dan SPI. (2018). Kode Etik Penilai Indonesia dan Standar Penilai Indonesia: Vol. Edisi VII (VII–2018). MAPPI.
Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Team, R. C., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., & Hunt, T. (2023). Package ‘caret.’ https://doi.org/10.32614/ CRAN.package.caret Strip Surakarta Utara Bagian Barat Sebagai Pusat Aktivitas Baru. Desa-Kota, 1(2), 167. https://doi.org/10.20961/desa kota.v1i2.14756.167-176
Probst, P., Wright, M. N., & Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3). https://doi.org/10.1002/ widm.1301
Putra, P. H., Azanuddin, A., Purba, B., & Dalimunthe, Y. A. (2023). Random forest and decision tree algorithms for car price prediction.
Montaño Moreno, J. J., Palmer Pol, A., Sesé Abad, A., & Cajal Blasco, B. (2013). Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema, 25(4), 500–506. https://doi.org/10.7334/ psicothema2013.23
Muningsih, E. (2022). Kombinasi Metode K-Means Dan Decision Tree Dengan Perbandingan Kriteria Dan Split Data. Jurnal Teknoinfo, 16(1), 113. https://doi.org/10.33365/jti. v16i1.1561
Musianto, L. S. (2002). Perbedaan Pendekatan Kuantitatif Dengan Pendekatan Kualitatif Dalam Metode Penelitian. Jurnal Manajemen Dan Wirausaha, 4(2), 123–136. https://doi.org/10.9744/jmk.4.2.pp.123-136
Nursalman, & Mustikasari. (2020). Pengaruh Penyetelan Hyperparameter Terhadap Kinerja Prediksi Random Forest pada Pendeteksian Spam. In JURNAL INSTEK Informatika Sains dan Teknologi (Vol. 5, Issue 2, pp. 149–158).
Páez, A., Uchida, T., & Miyamoto, K. (2001). Spatial Association and Heterogeneity Issues in Land Price Models. Urban Studies, 38(9), 1493–1508. http://www.jstor.org/ stable/43196723
Pamungkas, M. R., Soedwiwahjono, S., & Miladan, N. (2019). Kesiapan Kawasan Commercial Jurnal Matematika Dan Ilmu Pengetahuan Alam LLDikti Wilayah 1 (JUMPA), 3(2), 81–89. https://doi.org/10.54076/jumpa. v3i2.305
Ren, P., Li, Y., & You, K. (2021). Residents Demands for Urban Retail: Heterogeneity in Housing Structure Characteristics, Price Quantile, and Space. Land, 10(12). https://doi. org/10.3390/land10121321
Song, J., Gao, Y., Yin, P., Li, Y., Li, Y., Zhang, J., Su, Q., Fu, X., & Pi, H. (2021). The random forest model has the best accuracy among the four pressure ulcer prediction models using machine learning algorithms. Risk Management and Healthcare Policy, 14, 1175–1187. https://doi.org/10.2147/RMHP. S297838
Suliztia, M. L. (2020). Penerapan Analisis Random Forest Pada Prototype Sistem Prediksi Harga Kamera Bekas Menggunakan Flask. In Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Islam Indonesia.
Wooseok, K., Eunchan, K., & Wookjae, H. (2022). The Association Between SOC and Land Prices Considering Spatial Heterogeneity Based on Finite Mixture Modeling. ArXiv, 9, 53–78. http://dx.doi.org/10.15793/ kspr.2022.114..004
Wright, M. N., Dankowski, T., & Ziegler, A. (2017). Unbiased split variable selection for random survival forests using maximally selected rank statistics. Statistics in Medicine, 36(8), 1272–1284. https://doi. org/10.1002/sim.7212
Wright, M. N., Wager, S., & Probst, P. (2023). ranger: A Fast Implementation of Random Forests. https://doi.org/10.32614/CRAN.package. ranger
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Pertanahan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright @2021. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium.

